记忆网络
年份:2014
题目:Memory Networks
作者:Jason Weston and Sumit Chopra and Antoine Bordes
地址:http://arxiv.org/abs/1410.3916v11摘要
We describe a new class of learning models called memory networks. Memory
networks reason with inference components combined with a long-term memory
component; they learn how to use these jointly. The long-term memory can be
read and written to, with the goal of using it for prediction. We investigate
these models in the context of question answering (QA) where the long-term
memory effectively acts as a (dynamic) knowledge base, and the output is a
textual response. We evaluate them on a large-scale QA task, and a smaller, but
more complex, toy task generated from a simulated world. In the latter, we show
the reasoning power of such models by chaining multiple supporting sentences to
answer questions that require understanding the intension of verbs.
框架
- memory m:把 RNN 的内部记忆抽象出来了,空间更大,也可以有更多操作
- components:各部件的具体实现随便,比如 SVM、决策树
- I-input feature map:对输入处理为内部表示
- G-generalization:将输入更新到记忆中
- O-output feature map:根据输入与记忆给出输出的内部表示
- R-response:将输出的表示变换为期望样式的响应
- 流程:跟 RNN 差不多,就是把隐状态换成记忆了
- 输入更新记忆: m = G(m, I(x))
- 返回:R(O(m, I(x)))
components 全实现为 NN 就称为 Memory Neural Networks (MemNNs)。
一个 QA 的基本模型
假设输入是经过断句处理后的问句 x
- I(x) = x
- G 把 I(x) 存到 m 中下一个空位
- O 从 m 中找出 k 个相关句子,如 k = 2 时
- R 输出最合适的词作为回答
里面的两个 s 都是使用点积模型计算表示相关性的打分函数。
训练时 都作为监督数据。
Page Not Found
Try to search through the entire repo.