《机器学习的理论困境与因果革命的七个启示》
目前几乎所有机器学习都基于统计方法,调整出更好的参数,拟合出更好的曲线。
但人类的优势在于知识表示、环境建模、自主假设,最终回答“如果……”一类的问题。
因果的三个层次与机器学习的理论困境
结构性因果模型(Structural Causal Models)与因果革命
- 图形模型
- 结构性方程
- 反事实与干预逻辑
因果革命中的七个支柱
-- 因果模型的独到之处
1. Encoding Causal Assumptions - Transparency & Testability
- 透明:图形模型
- 可测试:d-separation
2. The Control of Confounding
- back-door
- do-calculus
3. The formalization and Algorithmization of Counterfactuals
- 图形表示
- 结构性方程:右边因,左边果
4. Mediation Analysis & the Assessment of Direct and Indirect Effects
- Mediation analysis
- 图形表示
5. External Validity & Sample Selection Bias
- Validity & Robustness
- Association: Domain Adaptation, Transfer Learning, Life-long Learning, Explainable AI
- Do-Calculus
6. Missing Data
- Probabilistic Relationships
7. Causal Discovery
d-separation => Testability => { Infer, Prune } the models
Page Not Found
Try to search through the entire repo.